- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agrawal, Kratika (1)
-
Gerych, Walter (1)
-
Jurovich, Nicholas (1)
-
Litterer, Benjamin (1)
-
Rundensteiner, Elke A. (1)
-
Thadajarassiri, Jidapa (1)
-
Thatigotla, Saitheeraj (1)
-
Tlachac, ML (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Corpuses of unstructured textual data, such as text messages between individuals, are often predictive of medical issues such as depression. The text data usually used in healthcare applications has high value and great variety, but is typically small in volume. Generating labeled unstructured text data is important to improve models by augmenting these small datasets, as well as to facilitate anonymization. While methods for labeled data generation exist, not all of them generalize well to small datasets. In this work, we thus perform a much needed systematic comparison of conditional text generation models that are promising for small datasets due to their unified architectures. We identify and implement a family of nine conditional sequence generative adversarial networks for text generation, which we collectively refer to as cSeqGAN models. These models are characterized along two orthogonal design dimensions: weighting strategies and feedback mechanisms. We conduct a comparative study evaluating the generation ability of the nine cSeqGAN models on three diverse text datasets with depression and sentiment labels. To assess the quality and realism of the generated text, we use standard machine learning metrics as well as human assessment via a user study. While the unconditioned models produced predictive text, the cSeqGAN models produced more realistic text. Our comparative study lays a solid foundation and provides important insights for further text generation research, particularly for the small datasets common within the healthcare domain.more » « less
An official website of the United States government
